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Evaluation of Fourier transforms by Gauss-Laguerre 
quadratures 

Robin P Sagar, Hartmut Schmider and Vedene H Smith J r  
Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6 

Received 16 April 1991 

Abstract. Numerical schemes for the evaluation of Fourier transfornu with Gauss- 
Laperre quadratures are presented. These schemes which incorporate functional 
values at complex arguments are tested for efficacy and accuracy. We illustrate 
their effectiveness on a simple model system by computing the form factor and its 
Laplacian for the neon atom. 

1. Introduction 

The numerical evaluation of Fourier transforms is an important problem in many 
areas of physics and chemistry. This transform is usually approximated by some 
quadrature rule. However, due to the oscillatory behaviour of the integrand and the 
infinite range of the integral, extreme care must be exercised especially for larger 
values of the frequency. This may necessitate the use of a large number of functional 
evaluations in the particular quadrature scheme. Thus the computational burden is 
enhanced. In this article we study the convergence properties of methods which involve 
simple transformations into the complex plane, in order to assess the capability of 
these methods in producing accurate results for physically significant systems. These 
methods, which approximate the Fourier transform by the Laplace integral, seem to 
have been first suggested by Wong [l] (method I), and Feuillehois [2] has recently made 
these methods more specific (method 11) for transforms of functions with an explicit 
exponential dependence. We will show how these methods may be adapted to be even 
more specific (method 111) for functions with exponential behaviour. We illustrate 
these points with our example of the computation of atomic form factors. Note that 
atomic units of length a. (Bohr) (= 0.529177 x lo-'' m) are used throughout this 
article. The values of the momentum transfer are therefore given in units of a;' 
(= 1.889727 x 10'' m-I). 

2. Methodology 

Let us consider the Fourier transform 

F ( k )  = g(r)f(r)eikr d r  Jlnm 
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Feuillebois (21 has recently shown that for g(r) = e-' and the change of variable 
z = (1 - ik)r (equation (1)) may be expressed as 
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F(k)  = - 
1 - ik 1, (m) e-* dz 

provided that f(z/( 1 - ik)) is analytic in the respective complex domain. The integral 
in equation (2) is ideally suited for integration with a Gauss-Laguerre quadrature since 
the factor e-" is included in the weights. Thus, equation (2) may be approximated by 

N 

F(k)  = l - i k j = ,  f ( L, 1 - ik wj  + E N ( f )  (3) 

where zj, wj  are the abscissae and weights of the N-order Gauss-Laguerre rule and 
EN is the error in the quadrature approximation. These rules may be constructed 
from the corresponding Laguerre polynomials which are orthogonal with respect to 
the weight function e-' [3] (method 11). 

On the other hand Wong [l] has shown that for g(r)  = rm, with m > -1, and the 
change of variable z = -ikr, the transform may be expressed as 

The integral in equation (4) may be approximated with a generalized Gauss-Laguerre 
quadrature 

m + l  N 

F ( k ) =  (i) j = 1  z f ( 2 ) w j + E N ( f )  ( 5 )  

where zj, wj  are now the abscissae and weights of generalized Gauss-Laguerre quadra- 
tures, i.e. obtained from the orthogonal polynomials with weight function zme-' and 
EN is the corresponding error term (method ij. 

If one combines these two methods and further considers g(r)  = rme-Or, where a 
is a positive real parameter and imposes the variable change z = (a - ik)r ,  one arrives 
at the relationship 

which may be treated with generalized Gauss-Laguerre quadratures as in the case of 
equation ( 5 ) ,  i.e. 

where zj, wj  are the abscissae and weights of the corresponding N-order generalized 
Gauss-Laguerre quadrature (method 111). 
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The atomic form factor, F ( k ) ,  is one of the most important quantities in experi- 
mental structure determination and can be obtained from elastic x-ray and electron 
scattering experiments [4]. It may be expressed as 

where p ( r )  is the spherically averaged one electron density. Equation (8) may be 
re-formulated as 

m 

F ( k )  = T I m  { 1 rp(r)eik' dr]  (9) 

Thus we may utilizeequation (9) to compute atomic form factors via the three methods 
we have discussed. For method I, g ( r )  = r, thus we may utilize equation ( 5 )  with 
f(z) = p(r ) ,  and use the generalized Gauss-Lagnerre quadratures with m = 1. It  is 
known [5] that Gauss-Laguerre quadratures may be used to integrate functions over 
the interval [O,m], which have no explicit exponential character, but which possess a 
general exponential type behaviour, 

where h(z )  is defined as f(z)e", and xj,wj are the abscissae and weights of the 
corresponding quadratures. This technique has in fact been recently used for the 
evaluation of some integrals over [O,m] arising in density functional theory [6]. It 
has also been used in the numerical determination of the generalized Fermi-Dirac 
integrals arising in  astrophysical phenomena (71. Since the density has an exponential 
type behaviour we may employ this technique in methods 11 and 111. Thus we use 
tp(z)e* in equation (3) and p(z)e** in equation (7). 

As a second test we compute V Z F ( k ) ,  the Laplacian of the form factor. This 
function has recently been shown to be able to extract salient information from atomic 
form factors, and is defined as (81 

W 

V 2 F ( k )  = 2 / r3p(r)sin(kr)dr. 
k o  

Thus V 2 F ( k )  may be computed by taking the imaginary part of the results of the 
three methods of Fourier integration in a manner analagous to the one for F ( k ) ,  with 
the exception that m = 3 for V Z F ( k )  in the corresponding generalized Gauss-Laguerre 
quadratures. 

3. Results and discussion 

We have computed the atomic form factor of neon using the three methods with a 
variety of different orders of Gauss-Laguerre and generalized Gauss-Laguerre quadra- 
tures. The charge density used in equations (3), (5) and (7) were computed from the 
near Hartree-Fock wavefunction of Clementi and Roetti [Q]. We chose to study form 
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factors since analytical formulae are readily available [IO] (and references therein). 
Thus this test system provides us with an effective means of judging the performance 
of the quadratures. We treat the results obtained from the analytical formulae as ez- 
act in order to compute the relative error of the quadratures. All computations were 
performed in double precision on a SUN 3/50 computer which yields about fifteen 
figures of accuracy. Our quadrature formulae were checked to be accurate to fourteen 
figures. The computations for methods I, 11 and 111 were done in double precision 
complex arithmetic. 
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Figure 1. Plot of the relativeemor, R, in the neon form factor as a function of k for 
the three different methods using 16 point Gauss-Laguerre quadratures. Note that 
in this and the following figures we have included fifteen significant figures although 
our quadratures are good to fourteen figures. 

In figure 1 we study the performance of the respective methods at  120 equally 
spaced values of loglo k .  We used the 16 point Gauss-Laguerre and the generalized 
Gauss-Laguerre (with m = 1) quadratures for this study. The value of the real 
parameter, a, in method 111 was arbitrarily chosen to be seven since the normalization 
condition of F ( 0 )  = N (the number of electrons), was quite closely met for this value 
as k approached zero. The results show that method 111 is by far the best for the 
presented range of k .  However, the other two methods are seen to exhibit similar 
performances between the first and second orders of magnitude of k .  What is perhaps 
most interesting is that  all of these methods perform better for larger values of k ,  
precisely where problems are encountered in the conventional treatments due to the 
highly oscillatory nature of the integrand. On the other hand, only method Ill  offers 
any reasonable accuracy at  small k. The reader must be reminded that we are using a 
relatively small (16 point) quadrature, i.e. even greater accuracy should be converged 
upon with a larger order quadrature. We illustrate this fact in figure 2 for k = 1 a;' 
and k = 10 a;' We used 2, 4, 6,  8, 12, 16, 24 and 32 point quadratures in this 
study, We observe that at  least for method 111 one may obtain higher accuracy by 
increasing the order of quadrature. Indeed, for k = 1 n o ' ,  a 32 point quadrature 
will yield a result very close to the maximum accuracy possible. This is not true 
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for methods I and I1 as very little accuracy is gained by increasing the order which 
possibly indicates that the results are very near the threshold of hest possible accuracy 
for the respective methods and this value of k .  For k = 10 00' , the accuracy does 
improve with increasing order of quadrature for all three methods, with method I1 
yielding better results than method 1. 

10 20 30 
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Figure 2. Convergence study of the quality of quadrature approximations to the 
neon form factor obtained from the three methods as a function of the order of 
q u a d r a t u r e f o r ( a ) k = l a o ' a n d ( b ) k = l O o ~ ' .  

Figures 1 and 2 have established that method 111 is by far superior for a greater 
range of k. However, central to this method is the choice of the parameter a. Thus we 
need to study the performance of the method with different values of this parameter. 
This information is presented in figure 3 .  Two points should he immediately obvious: 
First, the quality of the result is quite dependent on the choice of a. Second, since 
the curves for different values of a cross, it would seem that the optimum choice of a 
depends on which region of k one is interested in, i.e. there is no a which is universally 
the best for the whole range of k. However a judicious choice of a as illustrated by 
the plot will yield good results. If the normalization is known, one might suggest a 
procedure which chooses a so that as k gets small, the value of F ( k )  approaches the 
normalization F ( 0 ) .  

Lastly, we have performed an analagous analysis on V 2 F ( k )  and we present the 
results in table 1 for the 16 point quadratures. Although all three methods are seen to 
perform similarly for large k ,  this is not true for small k. Method 111 is clearly superior 
although the differences between it and the other two methods are less pronounced 
than in the case of the form factor. 

4. Conclusions 

We have presented an extension of powerful and simple methods for the numerical 
evaiuation of Fourier iransiorms and have iiiusiraied this by computing the atomic 
form factor and the Laplacian of the form factor for neon, from the charge density, 
This method is generally applicable to the extent that it may be used whenever the 
function to he transformed has an exponential type behaviour. The only restriction 



194 R P Sagar et  a l  

-3 -2 - 1  0 1 2 3 

Figure 3. A study of the error obtained from the use of different values of a in 
method 111, as a function of k ,  for the neon form factor. The 16 point Gauss-Laperre 
quadratures were used. 

Table 1. The logarithm of the relative error+ in V 2 F ( k )  with the use of the 16 point 
Gaws-Laperre quadratures at various k values for the three different methods. 

k/o;' Method 111 Method I1 Method I 

0.001 -6.672 -1.670 24.879 
::.se 

0,100 -6.678 -1.750 10.905 
1.000 -6.826 -1.350 3.228 
10.00 -7.848 -1.447 -0.418 
100.0 -14.185 -15.000 -14.185 
1000 -14.268 -15.000 -14.268 

1 Cvn 
-.."I" 

n n,n c CT, 
".".U -"_"I* 

t Note that the logarithm of all relative errors with  an absolute value < 
reported BS -15.000. 

are 

is that the function must be analytic in the complex domain and be readily evaluated 
at complex arguments. 
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